Duality for C*-algebras and applications

Heath Emerson

University of Victoria

November 2014

- ● ● ●

э

Poincaré duality for C*-algebras

Definition

Two C*-algebras A and B are Poincaré dual if there exist classes

 $\Delta \in \mathrm{KK}(A \otimes B, \mathbb{C})$ (the 'unit'), $\widehat{\Delta} \in \mathrm{KK}(\mathbb{C}, A \otimes B)$ ('co-unit')

such that the map

 $\mathrm{KK}(D_1, B \otimes D_2) \to \mathrm{KK}(A \otimes D_1, A \otimes B \otimes D_2) \stackrel{\cdot \otimes_{A \otimes B} \Delta}{\longrightarrow} \mathrm{KK}(A \otimes D_1, D_2),$

is an isomorphism for all D_1, D_2 .

Remark

It is enough to check that there is some class $\widehat{\Delta} \in \mathrm{KK}(\mathbb{C}, B \otimes A)$ which maps to 1_A , in the case $D_1 = \mathbb{C}$, $D_2 = A$, and so that the map $\mathrm{KK}(A \otimes B, \mathbb{C}) \to \mathrm{KK}(B, B)$ defined analogously using $\widehat{\Delta}$, maps Δ to 1_B . (The zig-zag equations).

Self-duality for K-oriented manifolds

Example

If X is a compact, K-oriented manifold, there is a distinguished elliptic operator on X called the *Dirac operator*. It determines a class $[D] \in \text{KK}(C(X), \mathbb{C})$. Let $\delta \colon X \to X \times X$ be the diagonal map. Set $\Delta := \delta_*([D]) \in \text{KK}(C(X) \otimes C(X), \mathbb{C})$. For $\widehat{\Delta}$, let

- ν be the normal bundle to the embedding $\delta \colon X \to X imes X$
- ξ_{ν} be the Thom class in $\mathrm{KK}(\mathbb{C}, C_0(\nu))$ of the vector bundle ν over X
- Â ∈ KK(ℂ, C(X × X)) be the image of ξ_ν under the map KK(ℂ, C₀(ν)) → KK(ℂ, C(X × X)) induced from tubular neighbourhood embedding of ν in X × X.

Then Δ and $\widehat{\Delta}$ induce a Poincaré duality between C(X) and itself.

Remark

 $\Delta \cap [E]$ is the class of the Dirac operator 'twisted' by E.

The Fock space extension of a Cuntz-Krieger algebra

A an *n*-by-*n* symmetric matrix of 0's and 1's, the adjacency matrix of a graph.

 O_A the Cuntz-Krieger algebra, generated by partial isometries s_1, \ldots, s_n with $s_i^* s_i = \sum_j A_{ij} s_j s_j^*$.

 F_A the 'Fock space' Hilbert space $\sum_{n=0}^{\infty} F_A^n$ where F_A^n is the span of the elementary tensors $\xi_{r_1} \otimes \cdots \otimes \xi_{r_n}$ where $A_{r_k,r_{k+1}} = 1$. Then for each i, j the left and right 'creation operators'

$$S_i(\xi_{r_1}\otimes\cdots\otimes\xi_{r_n}):=\xi_i\otimes\xi_{r_1}\otimes\cdots\otimes\xi_{r_n}$$

$$R_j(\xi_{r_1}\otimes\cdots\otimes\xi_{r_n}):=\xi_{r_1}\otimes\cdots\otimes\xi_{r_n}\otimes\xi_j,$$

,

commute with each other mod compacts and the S_i 's and R_i 's each respectively satisfy the Cuntz-Krieger relations mod compacts.

Using the Fock space construction we obtain an extension

$$0 \to \mathcal{K}(F_A) \to C^*(\{S_i, R_j\}_{i,j}) \to O_A \otimes O_A \to 0.$$
 (0.1)

of $O_A \otimes O_A$ by the compact operators.

Theorem (Kaminker, Putnam)

The class $\Delta \in \text{KK}^1(O_A \otimes O_A, \mathbb{C})$ of the Fock Space extension (0.1) induces a self-duality of O_A .

Remark

The world of *spaces* contains very few self-dual examples which are not manifolds!

If G is a Gromov hyperbolic group, it has a boundary ∂G which carries a continuous action of G.

Theorem (E)

The crossed-product $C(\partial G) \rtimes G$ is self-dual for any hyperbolic group G.

The duality class $\Delta \in \mathrm{KK}^1(\mathcal{C}(\partial G) \rtimes G \otimes \mathcal{C}(\partial G) \rtimes G, \mathbb{C})$ is built by constructing a certain extension

$$0 \to \mathcal{K}(l^2G) \to \mathcal{E} \to C(\partial G) \rtimes G \otimes C(\partial G) \rtimes G$$

that only depends on the fact that ∂G is part of a compactification $G \subset \overline{G}$ of G in the topological sense, and the geometric property that if $g_i \to \xi$ is a sequence of group elements converging to a boundary point $\xi \in \partial G$, then for any $g \in G$, $g_ig \to \xi$ as well.

To describe the $\rm K\mathchar`-homology$ of a C*-algebra in some geometric fashion.

Example

Poincaré self-duality for K-oriented manifolds implies that every K-homology class for C(X) is represented by a first order elliptic operator on X – and hence a $d := \dim(X)$ -dimensional spectral triple (H, π, D) over $C^{\infty}(X)$ in the sense that the principal values of D grow like $n^{\frac{1}{d}}$ – important for noncommutative geometry.

This is because Poincaré duality for manifolds is geometrically *computable*, and because of the nice form of the fundamental class, *i.e.* the Dirac operator.

Theorem (E, Nica)

If G is a Gromov hyperbolic group, d_{ϵ} a visibility metric on the boundary, then every K-homology class for $C(\partial G) \rtimes G$ is represented by a p-summable Fredholm module over $\operatorname{Lip}(\partial G, d_{\epsilon}) \rtimes_{\operatorname{alg}} G$ for $p > \operatorname{hdim}(\partial G, d_{\epsilon})$.

This follows from some ergodic properties of the boundary extension

$$0 \to \mathcal{K}(I^2G) \cong C_0(G) \rtimes G \to C(\overline{G}) \rtimes G \to C(\partial G) \rtimes G \to 0,$$

and Poincaré duality. The theorem follows from a description of the K-homology entirely in terms of a kind of pseudodifferential calculus for hyperbolic groups.

- Any compact manifold X is dual to TX.
- The irrational rotation algebra A_{θ} is self-dual.
- C₀(X) ⋊ G, X smooth K-oriented manifold, G discrete acting smoothly and properly, is self-dual.
- For a torsion-free K-amenable group, Baum-Connes says that C_r^*G is dual to C(BG).
- Certain quantum groups...

Another thing duality is good for rests on the following general calculation using the Künneth and Universal Coefficient theorems.

Theorem

If A and B are Poincaré dual with unit $\Delta \in KK(A \otimes B, \mathbb{C})$ and co-unit $\widehat{\Delta} \in KK(\mathbb{C}, A \otimes B)$, then $K_*(A)$ (and $K_*(B)$) have finite rank and if $f \in KK(A, A)$, then

$$(f \otimes 1_B)_*(\widehat{\Delta}) \otimes_{A \otimes B} \Delta = \operatorname{Tr}_s(f_*)$$

where Tr_s is the graded trace of f acting on $\operatorname{K}_*(A) \otimes_{\mathbb{Z}} \mathbb{Q}$.

If one twists the class $\widehat{\Delta} \in \mathrm{KK}(\mathbb{C}, A \otimes B)$ by f, pairs this with $\Delta \in \mathrm{KK}(A \otimes B, \mathbb{C})$, one gets the Lefschetz number of f.

The proof

The proof is essentially an exercise in the Künneth and UC Theorems. Duality gives a non degenerate bilinear form

 $\mathrm{K}_*(A)\otimes_{\mathbb{C}}\mathrm{K}_*(B)\to\mathbb{Z}$

and so if (x_i) is a basis for $K_*(A)$ there is a corresponding dual basis (y_i) for the K-theory of B. Now verify that

$$\widehat{\Delta} = \sum_i x_i \otimes y_i$$

because of duality, and compute.

Example

The integer $\widehat{\Delta} \otimes_{A \otimes B} \Delta$ obtained by pairing $\widehat{\Delta}$ and Δ , is the 'Euler characteristic' rank(K₀(A)) - rank(K₁(A)). (The case $f = 1_A \in \text{KK}(A, A)$.)

Deducing the Lefschetz fixed-point formula

Idea: whereas $\operatorname{tr}_s(f_*)$ is a global homological invariant of f, $(f \otimes 1_B)_*(\widehat{\Delta}) \otimes_{A \otimes B} \Delta$ is a Kasparov product that, when all the data is given geometrically, can be computed geometrically. Exercise If X is a smooth K-oriented manifold and $f: X \to X$ is a smooth map whose graph $X \to X \times X$ is transverse to the diagonal, Δ and $\widehat{\Delta}$ the duality classes explained above, then the integer $([f^*] \otimes 1_{C(X)})_*(\widehat{\Delta}) \otimes_{C(X \times X)} \Delta$ is the algebraic fixed-point set

$$\sum_{x\in \mathrm{Fix}(f)} \det(1-D_x f) \in \mathbb{Z}$$

of f_{\cdot} (This is because both duality classes are supported near the diagonal in $X \times X_{\cdot}$)

From the Exercises and the formal Lefschetz Theorem we deduce the traditional Lefschetz fixed-point theorem

$$\operatorname{tr}_{s}(f^{*}) = \sum_{x \in \operatorname{Fix}(f)} \det(1 - D_{x}f) \in \mathbb{Z}.$$

Are there noncommutative analogues of the Lefschetz fixed-point theorem deducible from the general formal Lefschetz theorem

$$(f\otimes 1_B)_*(\widehat{\Delta})\otimes_{A\otimes B}\Delta=\mathrm{tr}_s(f_*)?$$

Let G be a discrete group acting

- Properly
- Isometrically
- Co-compactly

on a smooth Riemannian manifold X.

Example

- $\bullet\,$ The group $\mathbb{Z}/2$ acting on the circle by complex conjugation.
- The infinite dihedral group G, generated by $x \mapsto x+1$, $x \mapsto -x$, acting on \mathbb{R} .

A duality between $C_0(X) \rtimes G$ and $C_0(TX) \rtimes G$ was constructed by [Echterhoff, E, Kim] using differential topology.

Automorphisms $f \in KK(C_0(X) \rtimes G, C_0(X) \rtimes G)$

(Smooth) automorphisms of $C_0(X) \rtimes G$: covariant pairs (ϕ, ζ) , $\phi: X \to X$ diffeomorphism, $\zeta \in Aut(G)$ a group automorphism, such that $\phi(\zeta(g)x) = g\phi(x) \ \forall x \in X$.

The transversality assumption: If $x \in X$, $g \in G$ such that $\phi(gx) = x$, then the map

$$\mathrm{Id} - d(\phi \circ g)(x) \colon T_x X \to T_x X \qquad (0.2)$$

is non-singular.

This implies that the fixed-point set of the induced map on the space $G \setminus X$ of orbits is finite.

Theorem

(Echterhoff-Emerson-Kim) Choose a point p from each fixed orbit of the induced map $\dot{\phi}: G \setminus X \to G \setminus X$. For each p, let $L_p := \{g \in G \mid \phi(gp) = p\}$ (it is finite); then the isotropy subgroup $\operatorname{Stab}_G(p)$ acts on L_p by twisted conjugation $h \cdot g := \zeta(h)gh^{-1}$. Let the orbits of this action be represented by elements g_1, \ldots, g_m . For each i, let $H_{p,i} \subset \operatorname{Stab}_G(p)$ be the stabilizer of g_i under this action $-H_{p,i}$ commutes with $\phi \circ g_i$. Then

$$\operatorname{tr}_{s}((\phi,\zeta)_{*}) = \sum_{\dot{\rho}\in\operatorname{Fix}(\dot{\phi})}\sum_{i}\frac{1}{|H_{\rho,i}|}\sum_{h\in H_{\rho,i}}\operatorname{sign}\operatorname{det}(\operatorname{id}-D_{\rho_{i}}(\phi\circ g_{i})_{|_{\operatorname{Fix}(h)}})$$

If X is a point and G is a finite group, $\zeta \in Aut(H)$, the theorem gives the following. Say that two elements g_1, g_2 of G are *twisted* conjugate if $g_1 = \zeta(h)g_2h^{-1}$ for some $h \in G$.

The automorphism ζ induces a map on the representation ring $\operatorname{Rep}(G)$ of G – a free abelian group.

Theorem

The trace of ζ_* : Rep(G) \rightarrow Rep(G) equals the number of ζ -twisted conjugacy classes in G.

Can the Lefschetz theorem be made equivariant?

Let G be a compact group, A and B G-C*-algebras which are G-equivariantly dual with unit and co-units Δ and $\widehat{\Delta}$. For example A and B could be C(X) for a compact, smooth G-equivariantly K-oriented manifold, by results of Kasparov. As before we consider the invariant

$$(f \otimes 1_B)_*(\widehat{\Delta}) \otimes_{A \otimes B} \Delta \in \mathrm{KK}^{\mathcal{G}}(\mathbb{C}, \mathbb{C}).$$

We call it the *geometric trace* of f. The ring $KK^G(\mathbb{C}, \mathbb{C})$ is canonically isomorphic to the representation ring Rep(G) of G.

Example

If $G = \mathbb{T}$ then $\operatorname{Rep}(G)$ is the ring $\mathbb{Z}[X, X^{-1}]$ of integer-coefficient Laurent polynomials in one variable. The *G*-equivariant K-theory of any *A* is a module over $\mathbb{Z}[X, X^{-1}]$.

Problem

Can the geometric trace be expressed in purely homological terms in the equivariant situation, *e.g.* in terms of Rep(G)-module traces?

A > < 3

- Since not all Rep(G)-modules are free, or even projective, there is no well-defined notion of 'trace' (nor even of 'rank').
- The UCT and Künneth Theorem do not hold equivariantly.
- (Worse) There is finite group G and two elements f with different geometric traces but which induce the same map on equivariant K-theory!

Definition

A *Hodgkin group* is a compact group which is connected with torsion-free fundamental group.

Lemma

If G is a Hodgkin group then $\operatorname{Rep}(G)$ is an integral domain.

In this case $\operatorname{Rep}(G)$ embeds in its field of fractions F_G and any $\operatorname{Rep}(G)$ -module (*i.e.* $\operatorname{KK}^G(A, B)$ for any A, B), can be made into an F_G -vector space by replacing it by

$$\operatorname{KK}^{G}(A,B) \otimes_{\operatorname{Rep}(G)} F_{G}.$$

If $f \in KK^{G}(A, A)$ then f induces a canonical vector space map on $K^{G}_{*}(A) \otimes_{\operatorname{Rep}(G)} F_{G}$ and we can define $\operatorname{tr}_{s}(f_{*})$ to be the graded trace of f acting on $K^{G}_{*}(A) \otimes_{\operatorname{Rep}(G)} F_{G}$. A priori it lies in F_{G} .

The formal equivariant Lefschetz formula for Hodgkin groups

Theorem

(Emerson, Meyer, Dell'Ambrogio) If G is a Hodgkin group and A a dualizable object of KK^G , then the homological trace $\mathrm{tr}_s(f_*)$ of f defined above actually lies in the image of $\mathrm{Rep}(G) \to F_G$ and agrees with the geometric trace $(f \otimes 1_B)_*(\widehat{\Delta}) \otimes_{A \otimes B} \Delta$ for any duality between A and B.

Theorem

Let X be a smooth compact G-manifold, $\Lambda \in KK^G(C(X), C(X))$ the class of a smooth G-equivariant correspondence $X \stackrel{b}{\leftarrow} (M, \xi) \stackrel{f}{\rightarrow} X$ from X to X. Assume that the map $(b, f): M \to X \times X$ is transverse to the diagonal $X \to X \times X$. Then the intersection space

$$Q_{b,f} := \{m \in M \mid b(m) = f(m)\}$$

admits a canonical G-invariant smooth structure and equviariant K-orientation, and the graded trace $tr_s(\Lambda_*)$ of Λ acting on $K^*_G(X)$ is equal to the Atiyah-Singer G-index of the Dirac operator on $Q_{b,f}$ twisted by ξ .

A smooth G-equivariant map $b \colon X \to X$ is encoded by the correspondence

$$X \xleftarrow{b} X \xrightarrow{\mathrm{id}} X$$

and the transversality assumption that (b, id) is transverse to the diagonal is the traditional general position assumption of the Lefschetz fixed-point theorem. Moreover,

$$Q_{b,\mathrm{id}} = \{x \in X \mid b(x) = x\}$$

is the fixed-point set of b, with a suitable G-equivariant K-orientation – *i.e.* a suitable G-equivariant $\mathbb{Z}/2$ -graded complex line bundle L on Q (next slide).

(continuing the case of maps...)

 $Q_{\mathrm{id},b}$ is a finite, *G*-invariant set of points of *X*.

Choose $q \in Q_{\mathrm{id},b}$, let $H := \mathrm{Stab}_G(q)$. The function

$$\chi_q \colon H \to \{\pm 1\}, \ \chi_q(h) := \operatorname{sign} \operatorname{det}(\operatorname{id} - D_q b|_{\operatorname{Fixed}(h)})$$

is \pm a character of H, corresponding to \pm a one-dimensional representation V_q of H, and

$$L|_{Gq} = \operatorname{ind}_{H}^{G}(V_q) := G \times_{H} V_q \in \operatorname{Rep}(G)$$

describes the K-orientation L along the orbit Gq.

An example – Euler characteristics

Fact For any smooth G-manifold X, the G-equivariant correspondence

$$X \stackrel{\mathrm{id}}{\leftarrow} (X,\xi) \stackrel{\mathrm{id}}{\longrightarrow} X$$

from X to X acts on $K^*_G(X)$ by the map λ_{ξ} of ring multiplication by ξ (thus using the ring structure on $K^*_G(X)$.) The Equivariant Lefschetz Theorem (and some more work) describes the graded module trace of this map geometrically. We state the result only in a special case.

Theorem

Assume the compact group \mathbb{T} acts smoothly on X with a finite set of stationary points in X. Then $\forall \xi \in K^0_{\mathbb{T}}(X)$,

$$\operatorname{tr}_{s}(\lambda_{\xi}) = \sum_{P} \xi_{|_{P}} \in \operatorname{Rep}(\mathbb{T}).$$

An example

Let $X = \mathbb{CP}^1$ with the T-action induced by the embedding $\mathbb{T} \to \mathrm{SU}_2(\mathbb{C}) \subset \mathrm{Aut}(\mathbb{C}^2), \ z \mapsto \begin{bmatrix} z & 0 \\ 0 & \overline{z} \end{bmatrix}$. There are two stationary points, with homogeneous coordinates [1,0] and [0,1] respectively. Let H be the dual of the canonical line bundle on \mathbb{CP}^1 with its natural T-action. Restricting H to the stationary points [1,0] and [0,1] yields respectively the characters X and X^{-1} , whence by the Lefschetz theorem

$$\operatorname{tr}_{s}(\Lambda_{[H]}) = X + X^{-1} \in \mathbb{Z}[X, X^{-1}].$$

To show this directly requires computing $K_{\mathbb{T}}^*(\mathbb{CP}^1)$ as a ring and as a $\mathbb{Z}[X, X^{-1}]$ -module: it is a free $\mathbb{Z}[X, X^{-1}]$ -module supported in dimension zero, with basis 1, [H]. One can check that $[H]^2 = (X + X^{-1})[H] + 1$, so that the matrix of ring multiplication by [H] is $\begin{bmatrix} 0 & 1 \\ 1 & X + X^{-1} \end{bmatrix}$ (the trace is as claimed).