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Poincaré duality for C*-algebras

Definition

Two C*-algebras A and B are Poincaré dual if there exist classes

∆ ∈ KK(A⊗ B,C) (the ‘unit’), ∆̂ ∈ KK(C,A⊗ B) (‘co-unit’)

such that the map

KK(D1,B⊗D2)→ KK(A⊗D1,A⊗B⊗D2)
·⊗A⊗B∆−→ KK(A⊗D1,D2),

is an isomorphism for all D1,D2.

Remark

It is enough to check that there is some class ∆̂ ∈ KK(C,B ⊗ A)
which maps to 1A, in the case D1 = C, D2 = A, and so that the
map KK(A⊗ B,C)→ KK(B,B) defined analogously using ∆̂,
maps ∆ to 1B . (The zig-zag equations).
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Self-duality for K-oriented manifolds

Example

If X is a compact, K-oriented manifold, there is a distinguished
elliptic operator on X called the Dirac operator. It determines a
class [D] ∈ KK(C (X ),C). Let δ : X → X × X be the diagonal
map. Set ∆ := δ∗([D]) ∈ KK(C (X )⊗ C (X ),C). For ∆̂, let

ν be the normal bundle to the embedding δ : X → X × X

ξν be the Thom class in KK(C,C0(ν)) of the vector bundle ν
over X

∆̂ ∈ KK(C,C (X × X )) be the image of ξν under the map
KK(C,C0(ν))→ KK(C,C (X × X )) induced from tubular
neighbourhood embedding of ν in X × X .

Then ∆ and ∆̂ induce a Poincaré duality between C (X ) and itself.

Remark

∆ ∩ [E ] is the class of the Dirac operator ‘twisted’ by E .
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The Fock space extension of a Cuntz-Krieger algebra

A an n-by-n symmetric matrix of 0’s and 1’s, the adjacency matrix
of a graph.

OA the Cuntz-Krieger algebra, generated by partial isometries
s1, . . . , sn with s∗i si =

∑
j Aijsjs

∗
j .

FA the ‘Fock space’ Hilbert space
∑∞

n=0 F n
A where F n

A is the span
of the elementary tensors ξr1 ⊗ · · · ⊗ ξrn where Ark ,rk+1

= 1.
Then for each i , j the left and right ‘creation operators’

Si (ξr1 ⊗ · · · ⊗ ξrn) := ξi ⊗ ξr1 ⊗ · · · ⊗ ξrn

,
Rj(ξr1 ⊗ · · · ⊗ ξrn) := ξr1 ⊗ · · · ⊗ ξrn ⊗ ξj ,

commute with each other mod compacts and the Si ’s and Ri ’s
each respectively satisfy the Cuntz-Krieger relations mod compacts.
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Duality of Kaminker and Putnam

Using the Fock space construction we obtain an extension

0→ K(FA)→ C ∗({Si ,Rj}i ,j)→ OA ⊗ OA → 0. (0.1)

of OA ⊗ OA by the compact operators.

Theorem (Kaminker, Putnam)

The class ∆ ∈ KK1(OA ⊗ OA,C) of the Fock Space extension
(0.1) induces a self-duality of OA.

Remark

The world of spaces contains very few self-dual examples which are
not manifolds!
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Hyperbolic groups

If G is a Gromov hyperbolic group, it has a boundary ∂G which
carries a continuous action of G .

Theorem (E)

The crossed-product C (∂G ) o G is self-dual for any hyperbolic
group G .

The duality class ∆ ∈ KK1(C (∂G ) o G ⊗ C (∂G ) o G ,C) is built
by constructing a certain extension

0→ K(l2G )→ E → C (∂G ) o G ⊗ C (∂G ) o G

that only depends on the fact that ∂G is part of a compactification
G ⊂ G of G in the topological sense, and the geometric property
that if gi → ξ is a sequence of group elements converging to a
boundary point ξ ∈ ∂G , then for any g ∈ G , gig → ξ as well.
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What Poincaré duality is good for

To describe the K-homology of a C*-algebra in some geometric
fashion.

Example

Poincaré self-duality for K-oriented manifolds implies that every
K-homology class for C (X ) is represented by a first order elliptic
operator on X – and hence a d := dim(X )-dimensional spectral
triple (H, π,D) over C∞(X ) in the sense that the principal values

of D grow like n
1
d – important for noncommutative geometry.

This is because Poincaré duality for manifolds is geometrically
computable, and because of the nice form of the fundamental
class, i.e. the Dirac operator.
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K-homological finiteness and hyperbolic groups

Theorem (E, Nica)

If G is a Gromov hyperbolic group, dε a visibility metric on the
boundary, then every K-homology class for C (∂G ) o G is
represented by a p-summable Fredholm module over
Lip(∂G , dε) oalg G for p > hdim(∂G , dε).

This follows from some ergodic properties of the boundary
extension

0→ K(l2G ) ∼= C0(G ) o G → C (G ) o G → C (∂G ) o G → 0,

and Poincaré duality. The theorem follows from a description of
the K-homology entirely in terms of a kind of pseudodifferential
calculus for hyperbolic groups.
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Other examples

Any compact manifold X is dual to TX .

The irrational rotation algebra Aθ is self-dual.

C0(X ) o G , X smooth K-oriented manifold, G discrete acting
smoothly and properly, is self-dual.

For a torsion-free K-amenable group, Baum-Connes says that
C ∗r G is dual to C (BG ).

Certain quantum groups...

Heath Emerson Duality for C*-algebras and applications



The formal Lefschetz trace theorem

Another thing duality is good for rests on the following general
calculation using the Künneth and Universal Coefficient theorems.

Theorem

If A and B are Poincaré dual with unit ∆ ∈ KK(A⊗ B,C) and
co-unit ∆̂ ∈ KK(C,A⊗ B), then K∗(A) (and K∗(B)) have finite
rank and if f ∈ KK(A,A), then

(f ⊗ 1B)∗(∆̂)⊗A⊗B ∆ = Trs(f∗)

where Trs is the graded trace of f acting on K∗(A)⊗Z Q.

If one twists the class ∆̂ ∈ KK(C,A⊗ B) by f , pairs this with
∆ ∈ KK(A⊗ B,C), one gets the Lefschetz number of f .
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The proof

The proof is essentially an exercise in the Künneth and UC
Theorems. Duality gives a non degenerate bilinear form

K∗(A)⊗C K∗(B)→ Z

and so if (xi ) is a basis for K∗(A) there is a corresponding dual
basis (yi ) for the K-theory of B.
Now verify that

∆̂ =
∑

i

xi ⊗ yi

because of duality, and compute.

Example

The integer ∆̂⊗A⊗B ∆ obtained by pairing ∆̂ and ∆, is the ‘Euler
characteristic’ rank(K0(A))− rank(K1(A)). (The case
f = 1A ∈ KK(A,A).)
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Deducing the Lefschetz fixed-point formula

Idea: whereas trs(f∗) is a global homological invariant of f ,
(f ⊗ 1B)∗(∆̂)⊗A⊗B ∆ is a Kasparov product that, when all the
data is given geometrically, can be computed geometrically.
Exercise If X is a smooth K-oriented manifold and f : X → X is a
smooth map whose graph X → X × X is transverse to the
diagonal, ∆ and ∆̂ the duality classes explained above, then the
integer ([f ∗]⊗ 1C(X ))∗(∆̂)⊗C(X×X ) ∆ is the algebraic fixed-point
set ∑

x∈Fix(f )

det(1− Dx f ) ∈ Z

of f . (This is because both duality classes are supported near the
diagonal in X × X . )
From the Exercises and the formal Lefschetz Theorem we deduce
the traditional Lefschetz fixed-point theorem

trs(f ∗) =
∑

x∈Fix(f )

det(1− Dx f ) ∈ Z.
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Idea

Are there noncommutative analogues of the Lefschetz fixed-point
theorem deducible from the general formal Lefschetz theorem

(f ⊗ 1B)∗(∆̂)⊗A⊗B ∆ = trs(f∗)?
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Example – a Lefschetz fixed-point theorem for orbifolds

Let G be a discrete group acting

Properly

Isometrically

Co-compactly

on a smooth Riemannian manifold X .

Example

The group Z/2 acting on the circle by complex conjugation.

The infinite dihedral group G , generated by x 7→ x + 1,
x 7→ −x , acting on R.

A duality between C0(X ) o G and C0(TX ) o G was constructed by
[Echterhoff, E, Kim] using differential topology.
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Automorphisms f ∈ KK(C0(X ) o G , C0(X ) o G )

(Smooth) automorphisms of C0(X ) o G : covariant pairs (φ, ζ),
φ : X → X diffeomorphism, ζ ∈ Aut(G ) a group automorphism,
such that φ

(
ζ(g)x

)
= gφ(x) ∀x ∈ X .

The transversality assumption: If x ∈ X , g ∈ G such that
φ(gx) = x, then the map

Id− d(φ ◦ g)(x) : TxX → TxX (0.2)

is non-singular.
This implies that the fixed-point set of the induced map on the
space G\X of orbits is finite.
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A Lefschetz fixed-point theorem for orbifolds

Theorem

(Echterhoff-Emerson-Kim) Choose a point p from each fixed orbit
of the induced map φ̇ : G\X → G\X .
For each p, let Lp := {g ∈ G | φ(gp) = p} (it is finite); then the
isotropy subgroup StabG (p) acts on Lp by twisted conjugation
h · g := ζ(h)gh−1. Let the orbits of this action be represented by
elements g1, . . . , gm. For each i , let Hp,i ⊂ StabG (p) be the
stabilizer of gi under this action – Hp,i commutes with φ ◦ gi .
Then

trs
(
(φ, ζ)∗

)
=

∑
ṗ∈Fix(φ̇)

∑
i

1

|Hp,i |
∑

h∈Hp,i

sign det(id−Dpi (φ◦gi )|Fix(h)
)
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The case of a point

If X is a point and G is a finite group, ζ ∈ Aut(H), the theorem
gives the following. Say that two elements g1, g2 of G are twisted
conjugate if g1 = ζ(h)g2h−1 for some h ∈ G .

The automorphism ζ induces a map on the representation ring
Rep(G ) of G – a free abelian group.

Theorem

The trace of ζ∗ : Rep(G )→ Rep(G ) equals the number of
ζ-twisted conjugacy classes in G .
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Can the Lefschetz theorem be made equivariant?

Let G be a compact group, A and B G -C*-algebras which are
G -equivariantly dual with unit and co-units ∆ and ∆̂. For example
A and B could be C (X ) for a compact, smooth G -equivariantly
K-oriented manifold, by results of Kasparov.
As before we consider the invariant

(f ⊗ 1B)∗(∆̂)⊗A⊗B ∆ ∈ KKG (C,C).

We call it the geometric trace of f . The ring KKG (C,C) is
canonically isomorphic to the representation ring Rep(G ) of G .

Example

If G = T then Rep(G ) is the ring Z[X ,X−1] of integer-coefficient
Laurent polynomials in one variable. The G -equivariant K-theory
of any A is a module over Z[X ,X−1].
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Problem

Can the geometric trace be expressed in purely homological terms
in the equivariant situation, e.g. in terms of Rep(G )-module
traces?
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Various problems

Since not all Rep(G )-modules are free, or even projective,
there is no well-defined notion of ‘trace’ (nor even of ‘rank’).

The UCT and Künneth Theorem do not hold equivariantly.

(Worse) There is finite group G and two elements f with
different geometric traces but which induce the same map on
equivariant K-theory!
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Hodgkin groups

Definition

A Hodgkin group is a compact group which is connected with
torsion-free fundamental group.

Lemma

If G is a Hodgkin group then Rep(G ) is an integral domain.

In this case Rep(G ) embeds in its field of fractions FG and any
Rep(G )-module (i.e. KKG (A,B) for any A,B), can be made into
an FG -vector space by replacing it by

KKG (A,B)⊗Rep(G) FG .

If f ∈ KKG (A,A) then f induces a canonical vector space map on
KG
∗ (A)⊗Rep(G) FG and we can define trs(f∗) to be the graded

trace of f acting on KG
∗ (A)⊗Rep(G) FG . A priori it lies in FG .
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The formal equivariant Lefschetz formula for Hodgkin
groups

Theorem

(Emerson, Meyer, Dell’Ambrogio) If G is a Hodgkin group and A a
dualizable object of KKG , then the homological trace trs(f∗) of f
defined above actually lies in the image of Rep(G )→ FG and
agrees with the geometric trace (f ⊗ 1B)∗(∆̂)⊗A⊗B ∆ for any
duality between A and B.
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Geometric consequence

Theorem

Let X be a smooth compact G -manifold, Λ ∈ KKG (C (X ),C (X ))
the class of a smooth G-equivariant correspondence

X
b←− (M, ξ)

f−→ X from X to X . Assume that the map
(b, f ) : M → X × X is transverse to the diagonal X → X × X .
Then the intersection space

Qb,f := {m ∈ M | b(m) = f (m)}

admits a canonical G -invariant smooth structure and equviariant
K-orientation, and the graded trace trs(Λ∗) of Λ acting on K∗G (X )
is equal to the Atiyah-Singer G -index of the Dirac operator on Qb,f

twisted by ξ.
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Example - the case of (equivariant) maps

A smooth G -equivariant map b : X → X is encoded by the
correspondence

X
b←− X

id−→ X

and the transversality assumption that (b, id) is transverse to the
diagonal is the traditional general position assumption of the
Lefschetz fixed-point theorem. Moreover,

Qb,id = {x ∈ X | b(x) = x}

is the fixed-point set of b, with a suitable G -equivariant
K-orientation – i.e. a suitable G -equivariant Z/2-graded complex
line bundle L on Q (next slide).
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The equivariant K-orientation on Qid,b

(continuing the case of maps...)

Qid,b is a finite, G -invariant set of points of X .

Choose q ∈ Qid,b, let H := StabG (q). The function

χq : H → {±1}, χq(h) := sign det(id− Dqb|Fixed(h))

is ± a character of H, corresponding to ± a one-dimensional
representation Vq of H, and

L|Gq = indG
H(Vq) := G ×H Vq ∈ Rep(G )

describes the K-orientation L along the orbit Gq.
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An example – Euler characteristics

Fact For any smooth G -manifold X , the G -equivariant
correspondence

X
id←− (X , ξ)

id−→ X

from X to X acts on K∗G (X ) by the map λξ of ring multiplication
by ξ (thus using the ring structure on K∗G (X ).) The Equivariant
Lefschetz Theorem (and some more work) describes the graded
module trace of this map geometrically. We state the result only in
a special case.

Theorem

Assume the compact group T acts smoothly on X with a finite set
of stationary points in X . Then ∀ξ ∈ K0

T(X ),

trs(λξ) =
∑
P

ξ|P ∈ Rep(T).
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An example

Let X = CP1 with the T-action induced by the embedding

T→ SU2(C) ⊂ Aut(C2), z 7→
[

z 0
0 z̄

]
. There are two stationary

points, with homogeneous coordinates [1, 0] and [0, 1] respectively.
Let H be the dual of the canonical line bundle on CP1 with its
natural T-action. Restricting H to the stationary points [1, 0] and
[0, 1] yields respectively the characters X and X−1, whence by the
Lefschetz theorem

trs(Λ[H]) = X + X−1 ∈ Z[X ,X−1].

To show this directly requires computing K∗T(CP1) as a ring and as
a Z[X ,X−1]-module: it is a free Z[X ,X−1]-module supported in
dimension zero, with basis 1, [H]. One can check that
[H]2 = (X + X−1)[H] + 1, so that the matrix of ring multiplication

by [H] is

[
0 1
1 X + X−1

]
(the trace is as claimed).
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